The Asymptotic Chebyshev Coefficients ior Functions with Logarithmic Enclpoint Singularities: Mappings ad Singular Basis Functions

نویسندگان

  • John P. Boyd
  • Melvin R. Scott
  • JOHN P. BOYD
چکیده

When a function is singular at the ends of its expansion interval, its Chebyshev coefficients a, converge very poorly. We analyze three numerical strategies for coping with such singularities of the form (1 + x)~ log(1 f x), and in the process make some modest additions to the theory of Chebyshev expansions. The first two numerical methods are the convergence-improving changes of coordinate x = sin[( In/Z&] and x = tanh[ly/(l y”)‘/2]. We derive the asymptotic Chebyshev coefficients in the limit n + 00 for both mappings and for the original, untransformed Chebyshev series. For the original function, the asymptotic approximation for general R is augmented by the exact Chebyshev coefficients for integer k. Numerical tests show that the sine mapping is excellent for k 2 1, increasing the rate of convergence to b, = 0(1/n 4k+1). Although the tanh transfomation is guaranteed to be better for sufficiently large n, we offer both theoretical and numerical evidence to explain why the sine mapping is usually better in practice: “sufficiently large n” is usually huge. Instead of mapping, one may use a third strategy: supplementing the Chebyshev polynomials with singular basis functions. Simple experiments show that this approach is also successful.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...

متن کامل

Asymptotic Coefficients of Hermite Function Series

By using complex variable methods (steepest descent and residues) to asymptotically evaluate the coefftcient integrals, the numerical analysis of Hermite function series is discussed. There are striking similarities and differences with the author’s earlier work on Chebyshev polynomial methods (J. Comp. Phys. 45 (1982), 45-49) for infinite or semi-infinite domains. Like Chebyshev series, the He...

متن کامل

Experimental and Mathematical Investigation of Time-Dependence of Contaminant Dispersivity in Soil

Laboratory and field experiments have shown that dispersivity is one of the key parameters in contaminant transport in porous media and varies with elapsed time. This time-dependence can be shown using a time-variable dispersivity function. The advantage of this function as opposed to constant dispersivity is that it has at least two coefficients that increase the accuracy of the dispersivity p...

متن کامل

گسترش روش بدون شبکه توابع پایه نمایی برای حل مسائل تکین ورق

: Existence of singular points inside the solution domain or on its boundary deteriorates the accuracy and convergence rate of numerical methods. This phenomenon usually happens due to discontinuities in the boundary conditions or abrupt changes in the domain shape. This study has focused on the solution of singular plate problems using the exponential basis functions method. In this method, un...

متن کامل

Asymptotic upper bounds for the coefficients in the Chebyshev series expansion for a general order integral of a function

The usual way to determine the asymptotic behavior of the Chebyshev coefficients for a function is to apply the method of steepest descent to the integral representation of the coefficients. However, the procedure is usually laborious. We prove an asymptotic upper bound on the Chebyshev coefficients for the kth integral of a function. The tightness of this upper bound is then analyzed for the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001